GenAI with Python Syllabus

GenAI with Python

Complete Professional Course Syllabus
Total Duration: 60 Hours
Recorded Sessions
MCQ Tests
Interview Q&A
Practical Code Sharing
Use Case Development
Powered by ittechgenie.com
Access All MCQ Tests at https://ittechgenie.com/TopicSelection

Python Foundation

Comprehensive Python programming, data structures, OOP, and development methodologies

Generative AI

Deep dive into LLMs, prompt engineering, vector databases, and AI application development

Vector Databases

Hands-on with Chroma DB, FAISS, Pinecone, and semantic search implementation

Assessment

MCQs and Interview Questions provided for each module to test your understanding

Part 1: Python Foundations

Module 1

Python Orientation & Development Practices

4 Hours

Topics Covered

  • Evolution of Python and its ecosystem
  • Interpreter vs Compiler
  • REPL, Jupyter Notebook, and IDE workflow
  • SDLC models: Waterfall, Agile
  • Agile concepts: Scrum roles, ceremonies, sprints
  • Story pointing & backlog overview
  • Git overview and repository management
  • Branching, merging, conflict handling
MCQs (10) Interview Qs (5) Code Examples
Module 2

Core Python Programming

5 Hours

Topics Covered

  • Python syntax and indentation
  • Writing & executing Python scripts
  • Variables and memory model
  • Data types: Numeric, String, List, Tuple
  • Sets, Dictionaries, Boolean, Binary, None
  • User input and formatting output
  • Namespaces and scopes
MCQs (15) Interview Qs (6) Code Examples
Module 3

Program Flow & Data Handling

6 Hours

Topics Covered

  • Conditional statements
  • for/while loops
  • Iteration patterns
  • Range operations
  • Working with collections
  • Manipulating lists, sets, dictionaries
  • Type casting and comparisons
MCQs (12) Interview Qs (5) Code Examples
Module 4

Functions & Object-Oriented Programming

8 Hours

Topics Covered

  • Defining functions
  • Lambda expressions
  • Higher-order functions
  • Modules and imports
  • Working with arrays
  • OOP concepts: Classes, Inheritance, Polymorphism
  • Iterators & generators
  • Date & time operations
MCQs (15) Interview Qs (7) Code Examples
Module 5

Advanced Python Utilities & Testing

10 Hours

Topics Covered

  • Exception handling: try/except, custom exceptions
  • Logging in applications
  • Regular expressions
  • JSON & data parsing
  • Python Packaging (pip, __init__.py)
  • Introduction to data analysis libraries: NumPy, Pandas, Matplotlib
  • Collections module: Counter, NamedTuple, OrderedDict
  • Unit Testing with Pytest
MCQs (20) Interview Qs (8) Code Examples Use Case: Data Analysis App

Part 2: Foundations of AI & Generative AI

Module 6

Introduction to Artificial Intelligence

6 Hours

Topics Covered

  • What is AI? AI vs ML vs DL comparison
  • Evolution of generative systems
  • Applications of AI in industries
  • Introduction to Large Language Models (LLMs)
  • Popular LLM families: GPT, Claude 3, Gemini, Llama, Mistral
  • Open-source ecosystems
  • On-device AI and tools like Ollama
  • Responsible AI & Ethical considerations
  • LLM safety and security practices
MCQs (15) Interview Qs (6) Code Examples Use Case: AI Chatbot
Module 7

Prompt Engineering Essentials

8 Hours

Topics Covered

  • Structure of LLM communication: System, user, assistant roles
  • Zero-shot prompting
  • Few-shot prompting
  • Chain-of-Thought prompting
  • Instruction tuning & guidelines
  • Handling hallucinations
  • Constraints & LLM parameters
  • Safety & responsible usage
  • Prompt evaluation techniques
MCQs (18) Interview Qs (7) Code Examples Use Case: Document Q&A System

Part 3: Vector Databases, Embeddings & Semantic Search

Module 8

Embeddings & Vector Concepts

10 Hours

Topics Covered

  • What are embeddings?
  • How text converts to vectors
  • Use cases of embeddings
  • Generating embeddings with HuggingFace
  • Introduction to vector databases
  • ChromaDB environment setup
  • Creating collections
  • Storing embeddings and metadata
  • Performing vector search
  • Indexing strategies
  • Overview of other Vector DBs: FAISS, Pinecone, Weaviate
  • Multi-modal embeddings
MCQs (20) Interview Qs (8) Code Examples Use Case: Semantic Search Engine
Module 9

Managing Vector Databases

6 Hours

Topics Covered

  • Indexing and vector storage models
  • Partitioning strategies
  • Upsert operations
  • Metadata creation & filtering
  • Handling large-scale vector data
  • Choosing distance metrics (cosine, euclidean, dot-product)
MCQs (15) Interview Qs (6) Code Examples Use Case: Recommendation System
Module 10

Semantic Search

8 Hours

Topics Covered

  • Difference between keyword search & semantic search
  • Data preprocessing
  • Named Entity Recognition (NER)
  • Batch embedding creation
  • Metadata enrichment
  • Query pipelines
  • Evaluating semantic search quality
  • Hybrid search (keyword + vector)
MCQs (18) Interview Qs (7) Code Examples Use Case: Legal Document Search

Part 4: RAG, LangChain & Agents

Module 11

RAG Architecture & LangChain

12 Hours

Topics Covered

  • Understanding Retrieval-Augmented Generation
  • RAG components (retriever, LLM, memory, scorer)
  • Advanced search optimisation
  • Document loaders & transformers
  • Multi-query retrieval
  • Context compression
  • Building RAG pipelines with LangChain
  • Quick UIs using Streamlit and Gradio
  • Prompt templates
  • Response parsing
  • Serialization & chaining logic
MCQs (25) Interview Qs (10) Code Examples Use Case: Research Assistant
Module 12

Advanced Chains, Memory and Agent Systems

10 Hours

Topics Covered

  • Multi-step chains & routing
  • Memory management strategies
  • Long-term context retention
  • Tool usage with agents
  • Multi-agent workflows
  • LangSmith integration
  • Debugging & tracing pipeline behavior
  • Collaboration between agents
MCQs (20) Interview Qs (8) Code Examples Use Case: Autonomous AI Assistant
Module 13

LangSmith & LangGraph Fundamentals

10 Hours

Topics Covered

  • LangSmith platform overview
  • Project monitoring dashboards
  • Tracing workflows
  • Evaluating LLM outputs
  • Configuring evaluators
  • Experiment tracking
  • LangGraph: Graph-based agent orchestration
  • Nodes, edges and workflow design
  • Typed state management
  • Conditional routing
  • Checkpointing & persistence
  • Async vs Sync execution
MCQs (22) Interview Qs (9) Code Examples Use Case: Workflow Management System
Module 14

LangGraph – Practical Implementations

12 Hours

Topics Covered

  • Defining state using Pydantic/TypedDict
  • Building functional nodes
  • Adding logic branches and static edges
  • Integrating LLMs & tools
  • Developing multi-agent systems
  • Human-in-the-loop patterns
  • Error handling & retry logic
  • Visualizing LangGraph flows
MCQs (20) Interview Qs (8) Code Examples Use Case: Enterprise AI Orchestrator

Part 5: Capstone Projects & Assessments

Course Features & Assessment Structure

Course Delivery

~60 Hours Live Online Sessions with Recorded Access

MCQ Tests

10–25 questions per module covering all topics

Interview Preparation

5–10 interview questions with answers per module

Hands-on Practice

Real-time code sharing and practical implementation

Project Development

End-to-end use case projects for portfolio building

Labs & Assignments

Hands-on coding labs for LLMs, Vector DB, RAG, LangChain

© 2023 GenAI with Python Course | Powered by

All course materials include Recorded Sessions, MCQ Tests, Interview Q&A, Practical Code Sharing, and Use Case Development